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ABSTRACT

The transcriptional response driven by Hypoxia-
inducible factor (HIF) is central to the adaptation to
oxygen restriction. Hence, the complete identifica-
tion of HIF targets is essential for understanding the
cellular responses to hypoxia. Herein we describe
a computational strategy based on the combination
of phylogenetic footprinting and transcription
profiling meta-analysis for the identification of
HIF-target genes. Comparison of the resulting can-
didates with published HIF1a genome-wide
chromatin immunoprecipitation indicates a high
sensitivity (78%) and specificity (97.8%). To
validate our strategy, we performed HIF1a
chromatin immunoprecipitation on a set of
putative targets. Our results confirm the robustness
of the computational strategy in predicting HIF-
binding sites and reveal several novel HIF targets,
including RE1-silencing transcription factor
co-repressor (RCOR2). In addition, mapping of
described polymorphisms to the predicted
HIF-binding sites identified several single-
nucleotide polymorphisms (SNPs) that could alter
HIF binding. As a proof of principle, we demonstrate
that SNP rs17004038, mapping to a functional
hypoxia response element in the macrophage
migration inhibitory factor (MIF) locus, prevents
induction of this gene by hypoxia. Altogether, our

results show that the proposed strategy is a
powerful tool for the identification of HIF direct
targets that expands our knowledge of the cellular
adaptation to hypoxia and provides cues on the
inter-individual variation in this response.

INTRODUCTION

Cells respond to chronic hypoxia by altering their gene
expression pattern to optimize metabolic oxygen con-
sumption, maintain energy balance and restore oxygen
supply. Many of the genes involved in this adaptive
response are directly regulated by the hypoxia-inducible
factor (HIF) (1), a transcription factor that is activated
when oxygen tension drops. HIF is a heterodimer
composed of an oxygen-regulated alpha subunit (HIFa)
(2) and a constitutively expressed beta subunit (HIFb, also
known as Aryl receptor nuclear translocator, ARNT) (3)
that partners with a number of basic-helix–loop–helix
transcription factors. Oxygen affects both HIFa half-life
(4) and transactivation (5). In normoxia, HIFa is
hydroxylated at two proline residues (6,7) by a family of
dioxygenases (EGL nine homologs, EGLNs) that require
oxygen as cosubstrate (8,9). This posttranslational modi-
fication labels HIFa for proteosomal degradation, as the
proline-hydroxilated form is recognized by an E3-
ubiquitin ligase complex that contains the VHL tumor
suppressor (10). In addition, another dioxygenase (factor
inhibiting HIF, FIH) catalyzes the oxygen-dependent
hydroxilation of an asparagine residue, located in the
C-terminal transactivation domain, preventing its
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interaction with the p300 coativator and blunting HIFa
transcriptional activity (11–13). In hypoxia, all these
hydroxylation reactions become compromised, due to
the reduced availability of oxygen, resulting in HIFa sta-
bilization and recruitment of coactivators, such as p300.
Thus, under hypoxia, HIF accumulation allows its inter-
action with HIFb and its binding to the RCGTG motif,
known as hypoxia response element (HRE), within regu-
latory regions of its target genes. There are three genes
encoding for HIFa subunits: HIF1a, HIF2a (also
known as EPAS) and HIF3a. HIF1a and HIF2a have
been extensively studied, while HIF3a remains poorly
characterized. The regulation of HIF1a and 2a by
hypoxia is similar and both bind to the same core motif
(1). However, recent evidence indicates that these tran-
scription factors induce overlapping but not identical
sets of genes (14,15), suggesting nonredundant functions
for HIF1a and HIF2a.

Given the central role of HIF in the transcriptional
response to hypoxia, the characterization of HIF target
genes provides critical insights into the adaptations
required to cope with reduced oxygen tension. Over a
hundred HIF-targets have been described (1) as the
result of research efforts focused on individual genes.
These studies revealed that many of the genes regulated
by hypoxia are involved in the reprogramming of cellular
metabolism and restoration of oxygen supply. More
recently, a number of studies described the effect of
hypoxia in the transcriptome by means of gene expression
profiling. These studies, covering a wide range of cell types
and conditions (16–26), revealed a large number of novel
potential targets. Although undoubtedly relevant, a major
drawback of this approach is that it cannot distinguish
between direct and secondary HIF targets. In addition,
no attempts have been made to combine the results of all
these studies. Such integrative studies, or meta-analysis,
have higher statistical power to detect relevant effects
than single studies and provide a generalization to the indi-
vidual experiments. In fact, several works (27) have
demonstrated that the application of meta-analysis to
multiple independent gene expression data sets leads to
the identification of sets of significant, differentially
expressed genes, void of the artifacts of individual studies.
Finally, two recent reports (28,29) coupled transcript
profiling and chromatin immunoprecipitation (ChIP)
followed by hybridization to genomic tiling microarrays
(ChIP–Chip) to identify direct HIF targets. A comparative
analysis is needed to reveal the extent of overlap between
conclusions of both studies and also whether further studies
are required. Thus, in spite of intense research efforts, the
complete characterization of HIF targets is still unresolved.

In silico identification of transcription-factor-binding
sites (TFBS) is a powerful tool to complement experimen-
tal identification of transcription factor targets (30). These
methods rely on the comparison of candidate sequences to
a position-specific scoring matrix (PSSM) constructed by
alignment of known binding sites for the transcription
factor of interest. HIF binds to a short, but extremely
well-conserved [A/G]CGTG motif. Conservation of
other positions outside this motif is controversial: while
some studies suggest that some positions show a base

distribution significantly different from random expecta-
tion (1,31,32), other studies fail to find conservation
outside the core RCGTG (28,29). Nevertheless, the low
information content of most PSSMs, including that of
HIF, and the size of mammalian genomes result in a
large number of potential hits across the genome. Since
conserved noncoding sequences (CNS) are enriched in cis-
regulatory elements (33,34), a successful approach to
reduce the number of spurious hits is to restrict the
search for TFBS to these regions. The identification of
CNSs, based on multiple species alignment of noncoding
genomic sequences, reveals evolutionarily conserved
regions (phylogenetic footprinting) that may have been
selected during evolution due their regulatory or structural
function. The algorithm PhastCons implements a two
state hidden Markov model that provides a score value
that reflects the conservation of each base of a reference
genome within a multiple species alignment (35).
Therefore, potential regulatory regions can be inferred
from PhastCons elements (groups of adjacent nucleotides
with a significant conservation score).
Recent works (36–38) have demonstrated that the com-

bination of gene expression data and TFBS prediction is a
powerful tool for the identification of transcription factor
target genes. In the present study, we applied a
probabilistic model that integrates the evidence for the
regulation of each particular gene by hypoxia (transcript
profiling meta-analysis) and the presence of high-scoring
HIF-binding sites (HBSs) for the identification of novel
HIF targets. The application of this strategy results in a
list of 216 predicted targets, most of them not previously
reported as regulated by hypoxia. We tested the accuracy
of our strategy by experimentally validating several of the
identified HBSs by ChIP–quantitative polymerase chain
reaction (qPCR). Moreover, we demonstrated that
RCOR2, one of the borderline targets identified, is
indeed a HIF-target gene. In addition, the strategy
reported herein provides the coordinates for several
hundred potential HBSs. We propose that, in addition
to the identification of HIF-target genes, this information
can be useful to identify genome variants within the pop-
ulation that could have an altered hypoxic response. As a
proof of principle, we found that one of these variants has
a major impact on the hypoxic induction of macrophage
migration inhibitory factor (MIF). Given the relevance of
hypoxia in pathologies, such as cancer and cardiovascular
disease, an altered response to hypoxia could be among
the underlying causes explaining different clinical courses
and/or response to treatments.

MATERIALS AND METHODS

Cell culture and hypoxic conditions

The cell lines HeLa, HepaC1/4 and HepG2 were main-
tained in Dulbecco’s modified Eagle medium, while
HepaC1 and HepaC4 cell lines were grown in MEM-a
medium. In all cases, the culture medium was supple-
mented with 100U/ml penicillin, 100 mg/ml streptomycin
and 10% (v/v) fetal bovine serum. Cells were grown at
37�C in a humidified atmosphere containing 5% CO2.
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For hypoxia treatments, cells were grown at the indicated
oxygen concentration in a Whitley hypoxystation (don
Whitley Scientific, UK).

Plasmid construction

Human genomic DNA extracted from HeLa cells was
used as template for PCR amplification of MIF and
RCOR2 promoter regions using primers 1+2 and 7+8
(Supplementary Table S1), respectively. Reporter con-
structs were generated by cloning the PCR products into
the pGL3-Basic plasmid (Invitrogen). The identity of all
constructs was verified by sequencing. The mutant HRE
and single-nucleotide polymorphism (SNP) constructs
were generated by site-directed mutagenesis, employing
PCR QuikChange Site-direct mutagenesis kit
(Stratagene). Primers harboring the desired mutation
were 2+3 (HREmut MIF), 9+10 (HREmut RCOR2)
and 5+6 (SNP-HREmut MIF), respectively
(Supplementary Table S1).

Reporter assays

Cells were plated in six-well plates 24 h prior transfection.
Each plate was transfected with a DNA mixture contain-
ing 0.9mg (HeLa cells) or 1.9 mg (HepG2 cells) of the
indicated reporter plasmid and 0.1mg of a plasmid
encoding the Renilla firefly luciferase under the control
of a SV40 promoter. 12–13 h after transfection, cells
were replated in 24-well plates and then transferred to
hypoxic conditions (1% oxygen) or left under normoxic
conditions for 24 h. Subsequently, firefly and renilla
luciferase activities were determined using a dual luciferase
system (Promega, Madison, WI, USA). In order to correct
for transfection efficiency, the luciferase activity was
normalized to the Renilla luciferase activity. Each experi-
mental condition was assayed in duplicate.

ChIP assays

For ChIP assays, HeLa cells were grown on 10-cm plates
until they reached 85% confluence, at which point they
were exposed to hypoxia (1% oxygen) or left under
normoxic conditions for 6 h. Subsequently, cells were
fixed for 12min at 4�C by adding formaldehyde to
culture media to final concentration of 1% (v/v).
Cross-linking was stopped by the addition of glycine
(0.125M final). The cells were washed with cold
phosphate-buffered saline (PBS) and then lysed by
scraping in 1ml of lysis buffer [1% sodium dodecyl
sulfate (SDS), 10mM EDTA, 50mM Tris/HCl, pH 8.1
and a protease inhibitor cocktail, Roche]. Cell lysates
were incubated on ice for 10min and then sonicated to
shear the DNA to fragments between 200 and 1500 bp.
After the removal of the insoluble material by
centrifugation, 50 ml of each sample was removed and
stored (input), while 100 ml were diluted in 1-ml
immunoprecipitation buffer (1% Triton X-100, 2mM
EDTA, 150mM NaCl and 20mM Tris/HCl, pH 8.1).
The lysates were precleared with 200 mg of a Salmon
Sperm DNA/Protein A agarose 50% slurry (Upstate
Biotechnology, Lake Placid, NY, USA) for 1 h at 4�C.
The samples were then immunoprecipitated twice, initially

with whole rabbit serum for 6 h [immunoglobulin G (IgG)
control] and then overnight at 4�C with a polyclonal
anti-HIF1 alpha antiserum (Abcam, ab2185).
Immunocomplexes were recovered by the addition of
400 mg of Salmon Sperm DNA/Protein A agarose 50%
slurry to the samples that were then sequentially washed
for 15min in TSE I (0.1% SDS, 1% Triton X-100, 2mM
EDTA, 20mM Tris/HCl, pH 8.1 and 150mM NaCl), TSE
II (0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM
Tris/HCl, pH 8.1 and 500mM NaCl) and buffer III
(0.25M LiCl, 1% NP-40, 1% deoxycholate, 1mM
EDTA and 10mM Tris/HCl, pH 8.1). Finally, the
complexes were washed twice with TE buffer (10mM
Tris, pH 8.0 and 1mM EDTA) and extracted twice with
a buffer containing 1% SDS and 0.1M NaHCO3. The
eluates were pooled, and cross-linking was reversed by
the addition of 200mM NaCl (final concentration) and
overnight incubation at 65�C. The proteins were
removed by the addition of proteinase K (30 mg/sample)
for 2 h at 42�C, and the DNA was purified by phenol–
chloroform extraction and ethanol precipitation.
Immunoprecipitated DNA was amplified by qPCR
using the primers (11–48) indicated in Supplementary
Table S1.

RNA extraction and qPCR

Cells were harvested in 1ml of Ultraspec reagent
(Biotecx). Subsequently RNA was reverse-transcribed to
cDNA (Improm-II reverse transcriptase; Promega).

q-PCR was performed with the LC FastStart DNA
master SYBR GreenI kit (Roche Applied Science) and
in a Light Cycler system (Roche Applied Science) using
the indicated primers (Supplementary Table SI). Data
were analyzed with Light Cycler software version 3.5.28
(Idaho Technology). For each sample, duplicate determi-
nations were made and the gene copy number was
normalized to the amount of b-actin.

Meta-analysis of gene profiling data sets

For the meta-analysis, we downloaded 16 independent
experiments from Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo/) (39) database
(Supplementary Table S2). For those experiments
analyzing more than two conditions (for example the
effect of hypoxia and HIF overexpression), we generated
independent data sets for each comparison. Thus, we
generated 19 data sets from the 16 experiments
(Supplementary Table S2). In all the cases, untreated
normoxic cells were used as reference. For each data set,
we calculated the mean for each probe values in the bio-
logical replicates. Probes with null values were discarded.
Then, for each probe, we calculated the effect of treat-
ments (hypoxia, hypoxia mimetics or HIF expression) as
the logarithm of the ratio of the means of treated and
control samples. Finally, individual log-ratios values
were normalized by subtraction of the mean of all the
log-ratios across the data set and division by their
standard deviation.

For the meta-analysis, each gene locus was treated
independently and tested for the null hypothesis that no
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gene was modulated by treatments. To this end, the
normalized log-ratio values of all probes (across all data
sets) mapping to the gene locus under consideration were
compared to zero using one-sample t-test. The resulting
P-values were corrected for multiple testing by applying
false discovery rate. Genes with adjusted P-values <0.01
were considered significantly regulated by treatments.
Custom Perl scripts were used for the analysis, comple-
mented with R-based extensions for the statistical
calculations.

Identification and scoring of HBSs

For the identification of HBSs, we restricted our search
to noncoding regions of genes. To this end, we considered
all the RefSeq transcripts encoded by each locus and
identified the intronic and untranslated regions within by
projecting all transcripts, therefore excluding transcript-
specific coding sequences. In addition, for each locus, we
selected a 5-kb region upstream the transcription start site,
TSS. When necessary, the upstream region was trimmed
to avoid overlap with adjacent loci. For genes with several
TSS, we selected the outermost TSS to define the 5-kb
upstream region (the region upstream the remaining TSS
is considered as part of the intronic regions). After the
localization of all noncoding regions, we identified
mammal or vertebrate PhastCons elements (35) within.
Adjacent PhastCons elements were fused if more than
50% of the sequence in the resulting fused region was
conserved. We refer to these PhastCons elements located
in noncoding regions as conserved noncoding sequences
(33) or CNSs. Then, we identified conserved RCGTG
motifs within these CNSs. A motif was considered
conserved when it was present at least in four mammals,
including human and mouse. Sequences lacking conserved
RCGTG motifs were discarded as potential HBSs.
Finally, sequences containing a conserved motif were
scored according to a PSSM. For the generation of this
matrix, we selected 23 well-characterized HIF-binding
sequences corresponding to 22 HIF-target genes,
together with an orthologous sequence (Supplementary
Table S4). Then, we used a chi-squared test to determine
those positions with an observed distribution of residues
significantly different to that expected by chance. This
analysis revealed that, in addition to the RCGTG motif,
some positions from �1 to +17 (being the R residue of
the core motif the position +1) showed a significantly
skewed distribution (P< 0.01). For each position, we
calculated the log-odds ratio of the observed frequencies
of each nucleotide over the background frequency found
for that nucleotide. The background frequency was
obtained from the counts of each nucleotide in the
CNSs: A, 0.275; C, 0.223; G, 0.229; T, 0.273. The
log-odds ratios were arranged in a 4� 18 matrix (a
column per position and a row for each nucleotide) so
that the score for the nucleotide i at position j is:

Si,j ¼ log2
freqobservedi,j

freqbackgroundi

 !

To calculate the score for the whole sequence (S) we added
the individual scores for each position. Since not all posi-
tions had the same information content (Supplementary
Table S4), the contribution of each position to the final
score was weighted by the information content of the
position (Ij):

S ¼
X
j

Ij � Si,j

The information content for each position j was calculated
from the Shannon entropy:

Ij ¼ �
X

freqbackgroundi � log2 freqbackgroundi

� �
�
X

freqobservedi,j � log2 freqobservedi,j

� �
The RefSeq coordinates, PhastCons coordinates and
the alignments corresponding to the identified CNSs
were downloaded from the UCSC genomic browser
(http://genome.ucsc.edu/index.html) (40,41). All coordi-
nates correspond to the hg18 human genome assembly.
The analysis was performed with custom scripts written
in Perl.

Classification of genes as HIF target/nontarget

To classify any given gene as a HIF target or nontarget,
we calculated the relative likelihood that the gene belongs
to any of these two groups. To this end, we constructed
models that, given the fold induction of the gene and
associated P-value according to our meta-analysis and
the score of the potential HBSs found within the gene
locus, assign a probability to the gene in each of the two
states. Then, the relative likelihood of being a HIF target
is the ratio (odds ratio) between the probabilities
according to each model. In the HIF-target model (T ),
we fitted the distribution of fold induction ( f ft xð Þ) and
HBS score ( f st yð Þ) values for the set of well-characterized
HIF-target genes (Supplementary Table S4) to a normal
(Gauss) density function. For the nontarget (Background,
B) model, we assumed that most of the genes in the
genome are not regulated by HIF, thus calculated
the Gaussian density functions describing the distribution
of fold induction and HBS score values for all the
analyzed genes [ f fb xð Þ and f sb yð Þ, respectively]. Then, the
probability of a gene being a HIF target given its fold
induction (and P-value) and HBS score, P(x,y,p|T ), is
the product of functions describing HBS score and fold
induction:

P x,y,pjTð Þ ¼ fst max yið Þð Þ � f ft xð Þ þ p � f fb xð Þ
� �� �

where x and p are the meta-analysis values for the fold
induction and associated P-value respectively and max
(yi) is the maximum score of the HBSs found within the
gene locus. Similarly the probability of the gene being a
nontarget (background) is:

P x,y,pjBð Þ ¼ fb
s max yið Þð Þ � f fb xð Þ þ p � f ft xð Þ

� �� �
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Finally, the ratio of these two likelihoods (odds ratio) rep-
resent the relative probability of being a HIF-target gene:

P x,y,pjTð Þ

P x,y,pjBð Þ
;

for simplicity we refer to this ratio as PT=PB ratio:

In these expressions, the contribution of the fold induction
value (f f xð Þ) to the probability was weighted by the
P-value associated to the mean so that when the fold
induction is not reliable (for large P-values approaching
1) its contribution to the probability is very similar for
target and nontarget:

f ft xð Þ þ p � f fb xð Þ
� �

� f fb xð Þ þ p � f ft xð Þ
� �

In this case, the classification (odds ratio) is just based on
the score value:

P x,y,pjTð Þ

P x,y,pjBð Þ
�

fst max yið Þð Þ

fsb max yið Þð Þ

RESULTS

Meta-analysis of gene expression profile data sets from
cells exposed to hypoxia

In order to identify HBSs, we designed a strategy based
on the intersection of two independent approaches:

(i) identification of hypoxia-modulated genes through
the analysis of multiple gene expression data sets from
publicly available databases (transcription profiling
meta-analysis); (ii) identification of evolutionarily
conserved HIF-binding motifs within potential cis-regula-
tory regions (phylogentic footprinting). For the first
approach, we selected 19 data sets from the GEO
database (http://www.ncbi.nlm.nih.gov/geo/) (39) corre-
sponding to 16 independent experiments that analyzed
the gene expression profile of cells exposed to hypoxia
or hypoxia mimetics (for simplicity, we refer to them as
hypoxia herein). We processed each of these data sets to
calculate the log2 of the hypoxia/normoxia ratio
(log-ratio) for each probe and then considered as
significantly regulated by hypoxia those probes whose
log ratio was >1.96 or >2.6 SD above or below the data
set mean. A gene was considered modulated when at least
one of its probes was significantly up- or downregulated.
This analysis revealed that only a small group of genes was
induced by hypoxia across all the experiments (Figure 1A
and Supplementary Table S3). In addition, even when a
relatively relaxed criterion (>1.96 SD from the mean) was
used to ascribe genes to the downregulated group, no gene
was found consistently repressed by hypoxia in all the
experiments (Figure 1A). On the other hand, the number
of nonredundant genes modulated by hypoxia increased
rapidly with the number of experiments (Figure 1B).
When taking into consideration all 19 data sets, we

Figure 1. Comparison of individual gene profiling studies versus meta-analysis. The indicated number of data sets (number of data sets) was
randomly selected out from the 19 GEO tables without replacement. The number of genes whose expression was 1.96 SD from the mean in all
(A) or at least in one (B) of the selected data set was recorded and the procedure repeated 10 times. The graph represents the mean number of
recorded genes and error bars the standard deviation. (C) For each individual data set (1 to 19, see Supplementary Table S2), the genes showing a
fold induction ratio >2.6 SD above the mean were considered upregulated. In the case of the meta-analysis (Meta-A), genes with a corrected P-value
<0.01 and mean fold induction positive were considered upregulated. The graph represents the number of known target genes (according to ref. 1)
represented in the upregulated group in each case (upper graph) together with the total number of upregulated genes (lower graph). The horizontal
lines in each graph represent the average number of known and upregulated genes across the 19 data sets.
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found a total number of 2864 up- and 2929 downregulated
nonredundant genes that together account for 49.6% of
the genes represented in these data sets. These results
indicate that the simple intersection of results from indi-
vidual experiments is too restrictive, while their combina-
tion results in excessive noise, highlighting the need for
a statistical analysis of the combined data sets. To this
end, we treated each gene as an independent hypothesis,
compared to the null hypothesis that the gene is not
modulated by hypoxia and thus the mean value of the
log-ratios of all its probes is 0. For each gene, we
obtained the value of the log-ratio for all associated
probes across all the data sets, calculated their mean
(mean fold induction) and used one-sample t-test to ask
whether it differed significantly from 0. After correction of
the resulting P-values for multiple testing (false discovery
rate), we selected genes with a P-value below 0.01 as
regulated by hypoxia. This analysis resulted in a total of
259 (2.22%) genes induced and 191 (1.64%) genes
repressed by hypoxia out of 11 673 genes represented in
all GEO data sets. As a crude measure of the meta-analysis
performance, we looked for known HIF targets (1) in the
set of upregulated genes identified in each independent
study or in our meta-analysis. As shown in Figure 1C,
the meta-analysis excelled the performance of the individ-
ual studies, recovering a higher number of known targets
than any of them. In addition, the increased sensitivity did
not seem to be accompanied by a reduction of specificity,
since the total number of upregulated genes identified by
the meta-analysis was not different to the average number
identified in individual studies.

In-silico identification of HBSs

For the prediction of genome-wide HIF binding positions,
we searched for the occurrence of RCGTG motifs in the
human genome. Since CNSs are genomic regions enriched
in cis-regulatory elements, we restricted our search to
these regions in order to increase the chances of finding
relevant motifs and to reduce the number of spurious hits.
In addition, we only considered RCGTG motifs that were
conserved in, at least, four species, including mouse.
For each locus, we defined CNSs as PhastCons elements
mapping to introns, untranslated regions and promoter
regions upstream of the TSS. This search resulted in
9458 potential HBSs (conserved RCGTG motifs)
distributed across 3980 genetic loci (34.1% of the
analyzed genes). We found no conserved HBSs in the
remaining 7693 (65.9%) gene loci analyzed.

Integration of the meta-analysis results and the presence
of conserved HBSs showed that, as expected, the propor-
tion of genes upregulated by hypoxia that contained
at least one conserved HBS was significantly higher
than expected by chance (P=3.2� 10�14, Table 1). In
contrast, we found no significant association between the
presence of an HBS and downregulation of the gene by
hypoxia (P=0.42, Table 1). Since we found no evidence
for a direct role of HIF on downregulation of gene expres-
sion, we focused on genes upregulated by hypoxia
throughout the study.

Scoring of HBSs

The alignment of a set of well-characterized HREs reveals
that, in addition to the core RCGTG motif, other posi-
tions present a distribution of bases significantly different
to that expected by chance (Supplementary Table S4 and
ref. 31). Thus, we decided to use this information to infer
functional HBSs. An 18-residue-long PSSM was generated
based on the alignment of 46 sequences (see
Supplementary Table S4 and ‘Materials and Methods’
section for details), and subsequently used it to assign a
score value to each of the identified HBSs. In order to
assess the ability of this score to discriminate functional
HBSs, we studied the distribution of scores for HBSs
recently identified by genome-wide ChIP–Chip (28,29).
A comparative analysis reveals that there is very little
overlap among the HIF-binding regions reported in
these two studies (Figure 2A), probably because of the
different cell lines/experimental conditions, data analysis
and array platforms used in each work. Thus, we only
considered the overlapping group of genes (Supplemen-
tary Table S5) as a reliable set of HIF targets. Figure 2B
shows the distribution of scores of our predicted HBSs
that map to any of the published HIF-binding regions
(28,29). For comparison, we also plotted the score distri-
bution for all the HBSs identified within CNSs across the
genome (control). These results show that the score distri-
bution for experimentally determined HBSs is shifted
toward higher score values. In particular, the scores of
the HBSs mapping to the regions identified in both
reports (highly reliable HBSs) are higher than those of
control genes, and the mean score for this group is
significantly different from that of the controls (Figure
2B). It is worth pointing out that only four (GAPDH,
LDHA, PGK1 and TF) of the 39 regions common to
both ChIP–chip studies are coincident with the HRE
regions used to construct the scoring matrix. Thus, the
results shown in Figure 2B are not due to overfitting of
our PSSM matrix to a specific set of HBSs.
Our search often predicted several HBSs for a given

locus (Supplementary Table S6). Therefore, in order to

Table 1. The presence of an HBS correlates with transcriptional

upregulation but not with repression by hypoxia

HBS+ HBS� P-value

Obsr. Expc. Obsr. Expc.

Upregulated 145 88 113 170 3.18� 10�14

Nonregulated 3766 3823 7459 7402

Downregulated 69 64 121 126 0.42
Nonregulated 3766 3771 7459 7454

Genes were classified as upregulated [mean log2(hypoxia/normoxia)> 0
and P< 0.01], downregulated [mean log2(hypoxia/normoxia)< 0 and
P< 0.01] or nonregulated (P> 0.01).
The number of genes in each group with at least one potential HBS
(HBS+) or none (HBS�) is shown (Obsr.).
The number of genes expected by chance in each group is also shown
(Expc.).
The significance of the difference between the observed versus expected
frequencies was calculated by a Chi-squared test and the resulting
P-value is shown (P-value).
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further test the relevance of the score value, we next
studied which one of the HBSs identified for each locus
mapped to the sites bound by HIF according to ChIP–
chip studies (28,29). To this end, the HBSs identified for
each gene were ranked according to their score (rank 1
corresponded to the HBS with the highest score for a
given locus) and the number of predicted HBSs of each
rank that were coincident with an experimentally deter-
mined HBS was represented (Figure 2C). The data show
that, in most cases, the experimentally validated HBS for a
given locus matched the predicted HBS of highest score

value. Altogether, the results in Figure 2B and C support
that the HBS score is a good predictor of functionality.

Probabilistic model of integrated binding site and
gene expression data

When combined, the two approaches described above
resulted in a list (Supplementary Table S6) in which
each gene had associated parameters reflecting the magni-
tude of its modulation by hypoxia (fold induction and
associated P-value) and one or several potential HBSs

Figure 2. High HBS scores correlate with functional HIF-binding sites. (A) Venn diagram showing the number of overlapping HIF-binding sites
identified by ChIP–chip in two published reports (ref. 29, Report #1; ref. 28, Report #2). (B) The scores of HBSs identified by our strategy were
discretized (binning size 0.5U) and their frequency distribution was calculated and adjusted to a Gauss curve by nonlinear fitting. The graph shows
the resulting curves for all the HBSs identified across the genome (control), the HBSs mapping to HIF-binding regions identified by ChIP–chip in
each report (Report #1, Report #2) or those HBS in regions common to both reports (#1\#2). The scores in each group were compared (ANOVA)
and statistically significant differences with the control group are indicated by asterisks (*, P< 0.01; **, P< 0.001). (C) The potential HBSs identified
for each gene were ranked according to their score in decreasing order (rank 1 corresponds to the highest scoring HBS) and the rank of the predicted
HBSs mapping to HIF-binding sites was recorded. The figure shows the rank frequency distribution for predicted HBSs mapping to HIF-binding
regions identified by ChIP–Chip in each report (Report #1, Report #2) or regions common to both reports (#1\#2). (D) Receiver operating
characteristic (ROC) curve of known positive/negative (see text) targets versus prediction using a PT/PB ratio of 6.5 as threshold to classify genes
as potential targets. (E) Genes identified as potential targets (PT/PB ratio >6.5) were sorted in decreasing PT/PB ratio order. The graph represents the
rank of known HIF targets, according to ref. 1 (Stke) or a bibliographic search (PubMed), within the predicted target list. Horizontal line represents
the median of each group.
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mapping to regulatory regions within the locus, each of
them having an associated score value. Our goal was to
use this information to calculate a measure of the relative
likelihood that the gene is an HIF target, as opposed of
being nondirectly regulated by HIF (background). To this
end, we constructed models that assign a probability to
the gene in each of the two cases, and obtained the ratio of
the two probabilities (odds ratio), we refer to this odds
ratio as PT/PB ratio. In order to determine the optimum
value for the PT/PB ratio for maximum sensitivity and
specificity of gene classification, we used receiver
operating characteristic (ROC) curve analysis (Figure
2D). For this analysis, the common set of 39 HIF
targets from ChIP–Chip studies (Figure 2A and Supple-
mentary Table S5) was used as known true targets. On the
other hand, we selected genes that, while presenting
conserved HBSs, were not induced by hypoxia (>30
probes in all data sets, mean fold induction between
�0.3 and +0.3 and P> 0.5) as negative set. According
to this analysis, a PT/PB ratio >6.5 resulted in an
optimum sensitivity of 78.05% and a selectivity of
97.77%. Thus, we calculated the PT/PB ratio for all
genes represented in GEO data sets and classified them
as HIF targets (PT/PB ratio >6.5) or nontargets (PT/PB

ratio �6.5 or lack of HBSs). Through this strategy,

we predicted 216 HIF-target genes (Supplementary
Table S6). Among them, 20 were previously known as
HIF targets (1) and for 44 additional genes, some biblio-
graphic evidence for their regulation by hypoxia was
found (Supplementary Table S6). The remaining 152
genes are, to our knowledge, novel potential targets. The
representation of the position of known target genes in
our ranked list of predicted targets (Figure 2E) shows
that they cluster toward the top positions [median values
of 23 and 48, for the known targets from (1) and PubMed,
respectively]. Thus, the PT/PB ratio accurately represents
the probability of being an HIF target.

Experimental validation of model predictions

In order to evaluate the accuracy of our predictions we
exposed HeLa cells to normoxia or hypoxia (1% oxygen)
for 12 h and determined HIF1a binding to a set of pre-
dicted HBSs by ChIP–qPCR. For this purpose, we
randomly selected six genes (RPLP0, MAFF, IDH2,
SERTAD2, TPD52 and CARHSP1) among those that,
according to our meta-analysis, were significantly
upregulated by hypoxia (P< 0.01). To simplify the valida-
tion, we restricted our selection to genes having a single
potential HBS. In addition, we included in this
analysis the HBSs identified for the UDP-glucose

Figure 3. Experimental validation of HIF binding to predicted sites. HeLa cells were exposed to normoxia or hypoxia (1% oxygen) for 6 h. After
treatments, cells were processed for chromatin immunoprecipitation using antibodies directed to HIF1a. The binding of HIF1a to the predicted HBS
within the indicated genes (A) was determined by qPCR. In the case of UGP2, HIF binding to two conserved HBSs was tested (B). The graph shows
the ratio of the immunoprecipitated material in hypoxia over normoxia. The results from three independent experiments (black circles) and their
median (line) are shown. In order to normalize data from the three independent experiments, the hypoxia/normoxia ratio is represented as fold over
the mean value obtained for all the negative controls in each experiment. Neg1, IRS4; neg 2, STT3A; neg 3, HIVEP; neg4, LTBP1. The binding of
HIF1a to the HRE within EGLN3 enhancer (E3+) or to a nonfunctional RCGTG within EGLN3 locus (E3–) were used as internal controls (ref.
31). For comparison, PT/PB ratio (in logarithmic scale) for each target is shown (bottom histogram), along with the threshold value of 6.5 (grey line).
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Pyrophosphorylase (UGP2) gene due to its potential role
in glycogen metabolism (manuscript submitted for publi-
cation) and the HREs identified within MIF and CDC2L6
genes because of their inter-individual variation (see sub-
sequent discussion). Finally, we also included five HBSs
motifs located in genes that were not induced by hypoxia
in any of the GEO data sets (IRS4, STT3A, HIVEP1 and
LTBP1) as a negative control group to estimate the back-
ground hypoxic/normoxic enrichment ratio. After the
treatments, cells were processed for ChIP using an
antibody directed to HIF1a. Then, we determined the
quantity of each of the target sequences in the HIF1a
immunoprecipitate by qPCR and expressed it as percent-
age of the input of immunoprecipitated chromatin.
Finally, we calculated the ratio for the enrichment in
samples exposed to hypoxia over normoxic samples. As
expected, the hypoxic/normoxic enrichment ratio for the
negative controls was close to 1 (Figure 3A). In addition,
we found a high enrichment ratio for the HBS in the
EGLN3 enhancer (31), used as positive control.
Importantly, in spite of the high variability observed for
the biological replicates, we found a good correlation
between target prediction (Figure 3A bottom histogram)
and experimental determination of HIF binding (Figure
3A, top graph). In general, only the candidates above the
threshold (UGP2, TPD52, GBE1, MAFF1 and MIF)
showed a consistent positive enrichment ratio in all three
independent experiments. In contrast, the genes predicted
as negative (MKRN1, RPLP0, IDH2 and SERTAD2)
showed a pattern similar to that of negative controls.
There were two exceptions, CARHSP1 and CDC2L2,
that did not behave as predicted. It is important to note,
however, that in both cases the PT/PB ratio was close to
the threshold value of 6.5.
To further test the strength of our classifier, we deter-

mined HIF binding to the two potential HBSs identified
within the UGP2 gene, HBS_1 and HBS_2, located in
chromosome 2 at positions 63 922 445 and 63 923 300,
respectively. According to their PT/PB ratios, 3� 10�5

and 14.4, respectively, only one of them (HBS_2) was clas-
sified as an HBS. In agreement with our prediction, only
HBS_2, but not HBS_1, was consistently found in HIF1a
immunoprecipitates (Figure 3B). Collectively, these results
confirm the accuracy of our predictions.
Next, we decided to determine the biological relevance

of the identified HBSs. To this end, we focused on
RE1-silencing transcription factor co-repressor 2
(RCOR2) because it was classified as positive by our
strategy with a PT/PB ratio close to the threshold (9.63).
In addition, it was not found significantly upregulated by
hypoxia in the gene expression profiling meta-analysis (fold
induction=0.44 and P=0.399). Thus, the classification
of RCOR2 as a true target was mainly based on the score
value of its HBS (see ‘Materials and Methods’ section).
First, we investigated HIF1a binding to the potential

HBS by ChIP–qPCR. As shown in Figure 4A, chromatin
from the target region was enriched in HIF1a-
immunoprecipitates from cells exposed to hypoxia. The
enrichment was similar to that observed for the EGLN3
enhancer and was not observed when a control IgG
was used for the immunoprecipitation (Figure 4A).

To determine whether HIF1a binding to this site had a
functional effect, we measured levels of RCOR2 mRNA in
cells exposed to hypoxia by qPCR. Figure 4B shows that
RCOR2 mRNA was induced by hypoxia in several cell
lines. Moreover, the induction of RCOR2 was dependent
on functional HIF since it was observed in HepaC1 cells,
but not in HepaC1 derivate lacking HIFb (42). Finally, we
generated a reporter construct (pGL3-RCOR2) by cloning
the RCOR2 promoter region, containing the putative
HRE, upstream a firefly luciferase gene. Transfection of
this construct into HepG2 cells demonstrated that the
promoter activity was induced by hypoxia (Figure 4C).
The induction was of similar magnitude to that observed
for other HIF-regulated regions such as VEGFA
promoter and EGLN3 enhancer (Figure 4C).
Importantly, the mutation of the putative HRE
completely abolishes the regulation of RCOR2 promoter
by hypoxia (Figure 4C). Thus, RCOR2 is a novel hypoxia
regulated gene whose induction under low oxygen is
dependent on HIF activity and the presence of the HRE
identified by our computational strategy. In addition,
these results further support the relevance of our
HIF-target predictions and show the robustness of our
approach even for borderline cases.

Identification of SNPs that interfere with the response
to hypoxia

The adaptation to hypoxia is largely dependent on
HIF-mediated gene expression. Therefore, the identifica-
tion of SNPs mapping to HBSs could reveal individuals
with an altered response to hypoxia. The strategy
described above provided a catalog of genome-wide
HBSs (Supplementary Table S6). Thus, we decided to
use this information to search for SNPs mapping to
these sites. We retrieved from the dbSNP (http://www
.ncbi.nlm.nih.gov/projects/SNP/) entries whose genomic
coordinates were coincident with the RCGTG motifs
identified by our computational strategy. This search
resulted in 146 SNP mapping to HBS motifs
(Supplementary Table S7). Among them, 12 corresponded
to sites within potential HIF targets (Table 2). We focused
on rs17004038 and rs10624 because they were validated
SNPs and were located within the only HRE identified for
MIF and CDC2L6 genes, respectively. As shown in Figure
3, both sites bound HIF in vivo; thus, rs17004038 and
rs10624 map to functional HBSs. In order to investigate
the biological effect of these polymorphisms, we cloned
the wild type MIF promoter region or the C!A
variant, corresponding to the SNP rs17004038, upstream
a firefly luciferase gene and performed reporter assays with
these constructs. As previously reported (43), MIF
promoter region (WT) was robustly induced by hypoxia
(Figure 5). Mutation of the HBS identified by our strategy
completely abrogated luciferase induction (Figure 5,
mutHRE), demonstrating its role in the transcriptional
upregulation of MIF promoter and in agreement with its
binding to HIF (Figure 3). Importantly, the variant allele
C!A was not upregulated by hypoxia and its behavior
was indistinguishable from the mutant HRE (Figure 5). In
contrast to the strong effect on the regulation by hypoxia,
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this point mutation had no effect on the basal activity
of the promoter showing an activity 1.16±0.46
(mean±SD) over wild-type promoter (P=0.85). These
results demonstrate that some polymorphic variants
have a dramatic effect on gene regulation by hypoxia.

DISCUSSION

The identification of the complete set of genes directly
regulated by HIF is essential to fully understand the
array of cellular responses activated during adaptation

Figure 4. RCOR2 is a HIF-target gene. (A) HeLa cells were exposed to normoxia (Nx) or hypoxia (Hx, 1% oxygen) for 12 h. After treatments, cells
were processed for chromatin immunoprecipitation using antibodies directed to HIF1a (anti-HIF1a) or control immunoglobulins (control IgG). The
binding of HIF1a to the predicted HRE within RCOR2, to the HRE within EGLN3 enhancer (EGLN3_pos) or to a nonfunctional RCGTG within
EGLN3 locus (EGLN3_neg) were determined by quantitative (upper panel) and semi-quantitative PCR (RCOR2, lower panel). MWM, molecular
weight marker. (B) HeLa, HepG2 and Hepa C1/C4 cells were exposed to normoxia or hypoxia for 12 h and the level of RCOR2 mRNA was
determined by quantitative PCR. The amount of each mRNA in samples was normalized to the content of b-actin mRNA in the same sample. The
graph represents the fold values of hypoxic over normoxic mRNA levels normalized to the value of 1 (horizontal axis). Data represents the values
from three independent experiments and their average (horizontal bar). (C) HepG2 cells were transfected with a reporter plasmid containing RCOR2
promoter region (�1770 to �795) upstream a luciferase reporter gene. Where indicated (asterisk) the consensus HRE sequence (ACGT) was mutated
to TAGC. For comparison, reporter constructs containing the EGLN3 enhancer and VEGF promoter were included. The graphs represent the
corrected luciferase activity values of each hypoxic sample over the luciferase activity obtained in normoxic cells. Data shown are a representative
experiment out of three independent determinations.

Table 2. SNP mapping to RCGTG motifs within potential HIF-targets

SNP_ID Validation Allele SNP_HBS Gene Chr Coordin Max_HBS

rs17004038 cluster, freq C/A _ACGT MIF 22 24 236 591 YES
rs17152486 freq, hapmap C/T A_GTG FLJ23834 7 105 671 891 YES
rs3758554 freq C/G CA_GC LDB1 10 103 874 672 NO
rs16943318 cluster, freq, hapmap G/A CAC_C RORA 15 61 209 971 NO
rs13358075 hapmap T/A ACG_G SPOCK1 5 136 347 100 NO
rs58433430 NA C/T A_GTG KLHL14 18 30 265 315 YES
rs2901215 NA T/G ACG_G TIAL1 10 121 356 578 NO
rs56306258 NA A/T _CGTG ANKRD12 18 9 136 756 NO
rs56033752 NA G/A AC_TG DLG2 11 83 898 942 NO
rs34394782 NA C/A/T CACG_ CITED2 6 139 695 473 NO
rs34476700 NA G/- _CGTG SENP3 17 7 463 409 NO
rs56298217 NA G/A GC_TG CLK3 15 74 914 649 NO

The ‘_’ symbol indicates the position of the SNP within the potential HIF-binding site. Max_HBS indicates whether the SNP maps to the highest
scoring HBS identified for each locus.
Note that only one of the possible alleles generates an RCGTG motif.
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to hypoxia. In this task, gene expression and TFBS data
generated by high-throughput tools are fundamental.
However, comparison between different studies (Figures
1A and 2A) reveals little overlap in the results, probably
not only because of the particularities in the response to
hypoxia in each particular system, but also because of the
intrinsic noise associated to these techniques. Herein we
describe a novel probabilistic strategy that integrates the
rich information contained in gene expression profiling
databases with classic bioinformatic approaches to
predict TFBSs. The evaluation of this strategy, using pub-
lished ChIP–chip data as a benchmark, indicates that it
has a low error rate while retaining a high sensitivity. In
agreement, our experimental validation revealed that five
out of six of predicted targets were in fact true positives
while 8/10 negatives were true negatives (Figures 3 and 4).
Thus, the computational strategy described herein proved
to be comparable in success rate to the experimental iden-
tification of HBSs by means of ChIP–chip, and it is hence
an attractive alternative until these high-throughput tech-
niques become more cost efficient.
In our strategy, the identification of relevant HBSs relies

on the similitude of the potential HBS sequences to a
PSSM that includes positions other than the core
RCGTG. This PSSM was obtained by our analysis of a
set of 46 sequences derived from well-characterized HREs
(Supplementary Table S4). In contrast to our result, the
analysis of genomic fragments bound by HIF failed to
identify extended sequence preferences beyond the core
RCGTG (28,29). Thus, it could be argued that the
extended motif revealed by our analysis is consequence
of the (relatively) reduced number of sequences in the
alignment (46 sequences). However, using a PSSM based
on this extended motif, we found that the HBSs identified
by ChIP–chip had an associated score significantly higher
than background sites (Figure 3B) and that, within a given
locus, the functional HBS coincides with the highest
scoring one (Figure 3C). These results strongly argue in
favor of the PSSM-based score as a reliable parameter to
discriminate functional HBSs and justify its inclusion in

our computational strategy. The information content of
the extra conserved positions is low as compared to that of
the core HRE (Supplementary Table S4), suggesting that
probably each individual position plays a minor role on
HIF sequence preference. However, its combined effect
could explain the preferential binding of HIF to these
sequences. Further work is required to prove the relevance
of these conserved positions outside the core RCGTG
and, in the event of them being relevant, to determine
whether they are part of the HIFa (or HIFb) binding
site, form the binding site of an unrelated transcription
factor or just confer a favorable structure. Another
premise in our strategy is that HREs are restricted to
genomic sequences conserved during evolution. We
imposed this restriction to our model knowing that not
all cis-regulatory motifs are conserved (44). Nevertheless,
this restriction was required to minimize the number of
false positives while allowing a good sensitivity (�80%).
In fact, this high sensitivity suggests that most real HBSs
do in fact lie within conserved regions. In agreement, we
found that 79% (254 out of 320) of the genomic fragments
reported to bind HIF (29) contained one or more
PhastCons elements. Thus, evolutionary conservation
constraints are useful in reaching an optimum trade-off
between sensitivity and specificity. In addition, our
results imply that most (80%) of the experimentally
identified HBSs are associated with CNSs. A further
potential limitation of our strategy is imposed by the
meta-analysis of gene expression profiling experiments.
In our meta-analysis, genes showing a tissue-specific reg-
ulation by hypoxia, such as erthyropoietin (EPO), fail to
be identified as hypoxia regulated genes. In order to
mitigate this effect, in our strategy, the contribution of
the meta-analysis to the classification of a gene as an
HIF target is weighted by the consistency of its regulation
by hypoxia (P-value) across the panel of microarray
experiments (see ‘Materials and Methods’ section for
details). In fact, this correction led us to the identification
of RCOR2 as a HIF target in spite of it being induced by
hypoxia in a limited number of experiments. Our analysis
correctly identified the HRE driving EPO expression, but
this gene was not selected as an HIF target because its
associated PT/PB value was 5.17, right below the threshold
of 6.5. In fact, EPO ranked in position 360 out of 11 672
analyzed genes. The design of our strategy tries to
minimize the false positives to give a highly reliable list
of HIF-targets but, because of the restrictions imposed,
several HIF targets are missed as is the case of EPO.
Hence, the list of 217 HIF-targets reported herein is
clearly an underestimation of the whole complement of
genes regulated by HIF.

An unexpected conclusion from our results is the lack
of HBS enrichment in hypoxia-downregulated genes
(Table 1). In agreement with our statistical approach, a
recent ChIP–chip study (28) also failed to find association
between HIF binding and transcriptional downregulation.
In fact, although a direct effect on gene downregulation
has been documented for some genes, such as CAD (45),
they are rare exceptions, being upregulation of targets the
predominant effect upon HIF binding. Thus, it is tempting
to speculate that, in contrast to gene induction, most of

Figure 5. The allelic variant C/A (rs17004038) abrogates MIF induc-
tion by hypoxia. HeLa cells transfected with a reporter plasmid con-
taining MIF genomic region (�31 to +108) upstream a luciferase
reporter gene. Where indicated the consensus HRE sequence
(CACGT) was mutated to CTAGC (mutHRE) or to AACGT (SNP).
The graph represents the corrected luciferase activity values of each
construct in cells exposed to hypoxia over the luciferase activity
obtained in normoxic cells. Data show the results for eight experiments
and its mean value (vertical line). Statistically significant differences
with control group (WT) are indicated by asterisks (***p< 0.001).
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the transcriptional downregulation triggered by hypoxia is
either HIF independent or mediated by a secondary factor
downstream of HIF (indirect effect). The lack of genes
consistently downregulated by hypoxia in gene expression
data sets (Figures 3 and 4) supports that HIF does not
play a direct role in gene downregulation. Interestingly,
among the HIF targets identified in our study, there are
several factors involved in transcriptional repression,
including the novel HIF target RCOR2 described herein
(Figure 4). Thus, it is plausible that HIF indirectly
promotes the transcriptional repression of specific genes
by controlling the expression of co-repressors. However,
other mechanisms could be envisioned to explain an
indirect effect of HIF on gene downregulation. For
example, it has been recently described that hypoxia/
HIF leads to the induction of microRNAs (46) that, in
turn, could lead to downregulation of specific groups of
genes. Thus, much work is required to understand the
molecular mechanisms responsible for hypoxia-induced
gene repression.

An important feature of our strategy is that it is not
restricted to a particular HIF isoform. Most of the GEO
data sets used for the meta-analysis (Supplementary Table
S2) derive from experiments that used hypoxia or the
EGLN inhibitor DMOG as stimuli and thus activated
all HIFa subunits present in the cells. Only in two tables
(GSE2020), a specific isoform was activated by
overexpression. On the other hand, it is assumed that
HIF1a and HIF2a bind to the same motif (RCGTG)
and that their differential target preference stems from
isoform-specific cooperation with other transcription
factors (47,48). In fact, the binding of both isoforms to
a common motif was recently confirmed by comparison of
the genomic sequences immunoprecipitated with HIF1a
and HIF2a (28). Thus, the approaches used in our
strategy are not biased toward the preferential identifica-
tion of isoform-specific targets. In fact, the list of candi-
dates (Supplementary Table S6) includes genes reported as
HIF1a [BNIP3, (48)] and HIF2a specific [CITED2, (47)].

The precise identification of HBSs did not only lead to
the identification of direct HIF targets but also allowed us
to predict polymorphisms that could affect gene regulation
by hypoxia. In this work, we identified several SNPs
mapping to predicted HBSs and demonstrated, in the
case of MIF promoter, that specific allelic variants result
in a severely impaired response to hypoxia. Thus, individ-
uals presenting this variant probably fail to properly
upregulate MIF in response to hypoxia. To our knowl-
edge, these results constitute the first demonstration that
the response to hypoxia could vary slightly between indi-
viduals of a population. It is difficult to predict the phys-
iological consequences of the lack of hypoxic induction of
MIF and further work is necessary to address this
question. However, it is likely that the abrogation of
hypoxic gene induction had dramatic consequences. In
agreement, elimination of the HRE driving the hypoxic
upregulation of VEGFA leads to motor neuron degener-
ation (49) and abnormal retinal neovascularization (50).
Given the number of pathologies that course with
hypoxia, our results point to a potential source of vari-
ability in the clinical course and/or response to treatments

among different individuals. In addition, these results
support the hypothesis that mutations in regulatory
regions, rather than in coding sequences, are important
to explain inter-individual variation. With the completion
of ongoing sequencing projects aimed at the identification
of novel SNPs, we foresee that the number of variants
affecting HBSs will increase.
In conclusion, the data presented herein demonstrate

that integration of gene expression profiling and in silico
identification of TFBSs is a successful approach for the
identification of direct target genes. In agreement, during
the writing of our manuscript, a report was published (51)
that employs a similar strategy to identify HIF targets.
Interestingly, although both works identify a list of
about 200 HIF targets, there is little overlap in the
identity of the individual target genes (only 37 genes
were coincident, see Supplementary Table S8), reflecting
important differences in the approaches followed in each
work. The application of our strategy led to the identifi-
cation of a set of novel (potential) HIF targets and our
experimental validation demonstrated the reliability of
these predictions. Moreover, we have found that, at least
one of the predicted targets, RCOR2, is an HIF target
gene regulated by hypoxia. In addition, elsewhere we
demonstrate that two additional novel targets, GYS1
and UGP2, are also regulated by hypoxia in an
HIF-dependent manner (manuscript submitted for publi-
cation). Finally, we identified polymorphisms mapping to
our predicted HBSs and demonstrated that specific alleles
have a profound impact on the regulation of transcription
by hypoxia. Altogether, these results expand our under-
standing of the adaptive responses to hypoxia and suggest,
for the first time, that this response can vary among
individuals.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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